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We derive an extended Fick-Jacobs equation for the diffusion of noninteracting particles in a two- and
symmetric three-dimensional channels of varying cross section A�x�, using a variational approach. The result is
a diffusion differential equation of second order in only one space �longitudinal� coordinate. This equation is
tested on the task of calculating the stationary flux through a hyperboloidal tube, and its solution is compared
with that of other methods.
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I. INTRODUCTION

Constructions by nature, and by man, proceed in a time-
ordered fashion, so that spatially ordered conceptually one-
dimensional structures are typical dominant units, e.g., linear
polymers. Even when strict one-dimensionality is not ob-
served, it is often discernible at low resolution, as in pores
and channels of high aspect ratio. Successful empirical de-
scriptions typically deal with quantities at low resolution, the
implicit assumption being that any further information de-
cays quickly in time. We then deal in essence with the ques-
tion of dimensional reduction: when can dynamics be
fashioned—and be valid—at this level alone?

A first step in the understanding process involves exam-
ining systems of only a few degrees of freedom, one of
which can be identified as one-dimensional location, say x,
and seeing to what extent the dynamics of the latter is self-
maintained. This question has been addressed by many
workers, the result of Jacobs �1� �and reputedly of Fick, well
prior� on diffusion of a simple particle in a pore of varying
cross-sectional area A�x� now being classical. It asserts that
if a particle diffuses in a region of longitudinal coordinate x,
transverse vector y�, where the transverse area A�x� at fixed x
is “small,” then the equation for the full probability density

���x,y�,t�
�t

= D� �2

�x2 + �y�
2���x,y�,t� �1.1�

with reflecting boundary conditions, can be replaced by

�P�x,t�
�t

= D
�

�x
�A�x�

�

�x

1

A�x�
P�x,t�� , �1.2�

where

P�x,t� = �
area A�x�

��x,y�,t�dy� . �1.3�

It reflects the distortion of the flow by the varying bound-
ary, whose effect cannot be neglected. In fact, it represents
the simplest form of equation of continuity for one-
dimensional density P�x , t�.

Zwanzig �2� has examined the same situation from the
point of view of a thermodynamically equivalent Kolmog-

orov equation, and concluded that �1.2� should be modified
to read

�P�x,t�
�t

=
�

�x
D�x�A�x�

�

�x

1

A�x�
P�x,t� , �1.4�

where the effective diffusion coefficient is D�x�
=D(1− 1

3A�2�x�) in 2D cylindrical geometry, or D�x�
=D(1−A�2�x� /8�A�x�) in 3D. As was shown in the example
of stationary flux through a hyperboloidal tube, this is only a
slight improvement over the Fick-Jacobs equation �1.2� and
further corrections are necessary.

Better results are achieved in case of specific geometries
of the tube, if its boundaries can be easily transformed to a
rectangle under some �conformal �3�� transformation, and
also for quasi stationary processes in periodic channels �4�,
where the wavelength can serve as a good small parameter.
But in general, flattening the boundaries by a simple coordi-
nate transformation �5� and treating the problem using stan-
dard perturbative technique, may lead to a complicated ex-
pansion, recovering in essence the Zwanzig correction term.

The essential question here is the choice of small param-
eter, in which one could do an expansion, yielding next cor-
rections to the Fick-Jacobs equation. Recently �6�, we revis-
ited this problem and adopted the strategy of introducing a
distinct transverse diffusion constant Dy and expanding in
the parameter �=D /Dy. Small � �high transverse diffusion
constant� makes the transverse relaxation more speedy; rapid
transverse sojourns quickly relax the transverse profile to a
steady-state form. In other words, �→0 helps to separate
two time scales, the slow longitudinal processes from the
rapid transverse relaxation. Mathematically, � appeared to be
a good small parameter, enabling us to carry out the expan-
sion of the spatial operator of the one-dimensional differen-
tial equation for P�x , t� �1.3�. Supposing that the time neces-
sary to form the steady-state transverse profile of density
��x ,y� , t� after variations of P�x , t� is negligible with respect
to the typical times of these variations �steady-state approxi-
mation�, we arrived at the equation �6�
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�P�x,t�
�t

=
�

�x
�A −

�

3
AA�2 −

�2

45
AA��2A�AA� + A�2�

�

�x

+ AA�A� + A2A�3� − 7A�3� + ¯ 	 �

�x

P�x,t�
A�x�

.

�1.5�

Notice, that the leading term corresponds exactly to the
Fick-Jacobs equation and the next term �of the order �1�
recovers the Zwanzig correction �2�.

Although the steady-state approximation was used, the
next analysis �7� showed that the full expansion in � repre-
sents an exact map of �1.1� on a reduced space of eigenstates
of its spatial operator. The recurrent procedure in �6� does
this mapping without needing to know the spectrum.

The problem is that this mapping ends up with a differen-
tial equation, whose spatial operator has very complicated
structure. The nth order term in � contains all derivatives in
x up to �x

n+1, so even the second-order correction cannot be
expressed in the convenient Zwanzig form �1.4�, involving
only some next correction of the effective diffusion coeffi-
cient D�x�. An intermediate approach that maintains the sim-
plicity of �1.4� but greatly improves its accuracy would be
welcome.

In this paper, we offer such a simplification. It comes
from the idea that the complicated structure of the mapped
spatial operator could be caused by unsuitable choice of the
coordinate system. Having been inspired by the solvable ge-
ometries mentioned above, we suppose that some kind of
curvilinear coordinates instead of Cartesian ones would be
more appropriate. The longitudinal curvilinear variable z
=z�x ,y�� should be related to �or coincide with� x on the
reference longitudinal axis, but the surfaces defined by
z�x ,y��=const should better reflect the structure of the 2D
�3D� local fluxes, given by the curved walls of the channel.
Aspiring to find another representation of mapping onto the
longitudinal dimension, we then suppose that the 2D �3D�
density depends only on z; ��x ,y� , t�=��z�x ,y�� , t�=��z , t�.

The question is how to find the proper curvilinear coordi-
nate system. If � depends only on the variable z=z�x ,y��, the
surfaces z�x ,y��=const are normal to the local flux. But this
condition cannot be used backward for defining the relation
z=z�x ,y��; the normal surfaces to the flux change in time and
depend also on the initial condition in general. To fix the
coordinate transformation, we use a softer condition, requir-
ing that the Neumann b.c. for ��z� are satisfied exactly.

However, the density depending only on one variable
��z , t� can be just an approximation, it represents in fact
some kind of ansatz for the exact density ��x ,y� , t�. This en-
courages us to adopt a variational technique for finding the
optimal mapped equation for it. We arrive at an equation
having the form of the corrected Fick-Jacobs equation �1.4�;
it is a second order differential equation in z in any order of
�. This is the content of the following section.

In Sec. III, we compare this extended Fick-Jacobs equa-
tion with the steady state approximation �1.5�, showing that
after returning to the x coordinate, they coincide up to the
second order in �. Finally, in Sec. IV, we test this approxi-
mation on exactly solvable models: in 2D for A�x�=x and in

3D for diffusion in a rotationally symmetric hyperboloid, and
compare it with other approximative methods.

II. VARIATIONAL FORMULATION

Variational methods are widely used in quantum mechan-
ics, but not for the description of the diffusion, so we pay
more attention to this point in this section.

A variational technique is based upon construction of a
functional of the function to be found that is stationary under
arbitrary infinitesimal changes in this function when it actu-
ally is a solution to the system of equations. Under the best
of circumstances, it will be an absolute minimum �or maxi-
mum� and the functional will itself represent a physical
quantity of interest. But even if these properties are not sat-
isfied, such a formulation still gives a reproducible recipe for
selecting optimal parameters in simple parametrized models
of the solution, and this is the aspect that we will use to
advantage. The equation to be solved is �1.1�, generalized to
transverse diffusion constant Dy =D /�, and its associated re-
flection boundary conditions, over a time interval, say t0 to
t1. For simplicity, let us first concentrate on the two-
dimensional case—one longitudinal coordinate x and one
transverse coordinate y.

It is readily seen that a suitable functional is then given by

F = �
t0

t1

dt�
xL

xR

dx�
0

A�x�

dy�1

2
��̇�̄ − �̇̄�� + �x�̄�x� +

1

�
�y�̄�y�� .

�2.1�

The stationary condition �F=0 is satisfied if the function
��x ,y , t� and its complementary �̄�x ,y , t� satisfy the equa-
tions

�̇ = �x
2� +

1

�
�y

2� and − �̇̄ = �x
2�̄ +

1

�
�y

2�̄ �2.2�

as well as the Neumann boundary conditions, expressing the
reflection condition that the boundary fluxes j= �−�x� ,

−�1/���y�� and j̄= �−�x�̄ ,−�1/���y�̄� have vanishing normal
component:

�y� = 
0
y=0, �y�̄ = 
0
y=0 �2.3�

1

�
�y� = 
A��x��x�
y=A�x�,

1

�
�y�̄ = 
A��x��x�̄
y=A�x� �2.4�

and �x�=�x�̄= 
0
x=xL,xR
.

The first equation �2.2� is just the diffusion equation for
the 2D density ��x ,y , t� in an anisotropic environment. We
have introduced the diffusion constant Dy in the transverse
direction, supposed greater than the longitudinal diffusion
constant D; �=D /Dy and time is rescaled by D.

The second equation represents diffusion running back-
wards in time, from t1 to t0, completely meaningful in light
of the finite time interval. Note that, at stationarity, the func-
tional F is readily evaluated and has precisely the value 0.
But what we will take advantage of is that, nonetheless, the
stationary condition does imply the diffusion equation, with
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its boundary conditions, and approximations in the evalua-
tion of the stationary functional will then produce approxi-
mations to the diffusion. Note too that the Neumann condi-
tions �2.3� and �2.4� do not have to be inserted by hand-they
are a consequence of the variational principle.

The advantage of the variational form is that it is formally
easy to do approximations. Having chosen an ansatz for the
varied functions, it finds the best possible solution within the
allowed freedom. Here we are going to suppose that � and �̄
are functions of only one spatial variable z, depending on x
and y: �=�(z�x ,y� , t) and �̄= �̄(z�x ,y� , t). Next, our plan is to
rewrite the original diffusion functional F �2.1� in this vari-
able and find the corresponding differential equation from
the condition of its stationarity.

After substituting for � and �̄ in F �2.1� according to this
supposition and transforming from the coordinates �x ,y� to
�z ,y�, we have

F = �
t0

t1

dt�
zL

zR

dz�
0

A�xz�

dy
�x

�z
�1

2
��̇�̄ − �̇̄��

+ �� �z

�x
�2

+
1

�
� �z

�y
�2��z�̄�z�	 , �2.5�

�x /�z is the Jacobian of the transformation; x=x�z ,y� is the
relation inverse to z=z�x ,y�. The integration over y is now
carried out at constant z �see Fig. 1�, so its upper limit is
changed to A�xz�, defined by the equation

xz = x„z,A�xz�… . �2.6�

Having completed the integration over y, we get a functional
F1D:

F1D���z,t�, �̄�z,t�� = �
t0

t1

dt�
zL

zR

dz�1

2
��z���̇�̄ − �̇̄��

+ ��z��z�̄�z�	 , �2.7�

where the coefficients ��z� and ��z� are defined as follows:

��z� = �
0

A�xz�

dy
�x

�z
, �2.8�

��z� = �
0

A�xz�

dy
�x

�z
�� �z

�x
�2

+
1

�
� �z

�y
�2�

= �
0

A�xz�

dy� �x

�z
�−1�1 +

1

�
� �x

�y
�2� . �2.9�

F1D is also a diffusion functional, but working on a re-
stricted space of the functions �, �̄ of only one spatial vari-
able z. For this functional, we find a new stationary condition
�F1D=0:

0 = ��
zL

zR

dz
��z�

2
��̄�� − ���̄�	

t0

t1

+ �
t0

t1

dt���z����̄�z�

+ ���z�̄��zL

zR + �
t0

t1

dt�
zL

zR

dz���̄„��z��̇ − �z��z��z�…

− ��„��z��̇̄ + �z��z��z�̄…� �2.10�

which is satisfied for any variation ��̄�z , t� and ���z , t�, if the
functions � and �̄ satisfy the equations:

��

�t
=

1

��z�
�

�z
��z�

�

�z
�, −

��̄

�t
=

1

��z�
�

�z
��z�

�

�z
�̄ .

�2.11�

The first equation, governing ��z , t� is the mapped 1D diffu-
sion equation we have been looking for. The only question
that must be resolved now is how to find the proper transfor-
mation relation z=z�x ,y�.

First, let us stress that the proposed procedure finds the
mapped 1D diffusion equation �2.11� for any chosen relation
z=z�x ,y�. The equation will have the same form but with
different functions ��z� and ��z�, according to �2.8� and
�2.9�, for different z=z�x ,y�. To fix the optimal transforma-
tion directly from the functional F1D, one might want to vary
the functional F �2.5� before integration over y not only with
respect to �� and ��̄, but also �z�x ,y�. The result is a set of
complicated equations, where z=z�x ,y� depends on � and
�̄—it reflects the fact mentioned in the Introduction, that the
normal surfaces to the flux density depend on time and initial
density. In other words, using this approach does not lead to
a simple 1D diffusion equation for ��z , t� of the Fick-Jacobs
type.

The easiest way to find an appropriate transformation is to
fix z=z�x ,y� so that the boundary conditions �2.3� and �2.4�
are satisfied for any ��z , t�. The function ��z�x ,y� , t� must
obey

FIG. 1. Integration over y is carried out from 0 up to A�xz� after
transformation to the coordinates �z ,y�.
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��

�z

 �z

�y
= 0


y=0
,

1

�

��

�z

�z

�y
= A��x�

��

�z

 �z

�x



y=A�x�

�2.12�

and the same for �̄�z�x ,y� , t�. These conditions will be satis-
fied for general �, �̄, if z�x ,y� has the form of an expansion
in �

z = �
j=0

�

� jy2jzj�x� . �2.13�

This is again an ansatz, having its justification in the fol-
lowing consideration: if �→0, the transverse relaxation is
instant and the density ��x ,y , t� is immediately smeared to a
constant in y direction. In this limit, flux density is parallel to
x-axis and so the unity transformation z=z�x ,y�=x is suffi-
cient. We have only introduced a more general transforma-
tion z=z0�x� for this limit �→0. If �	0, the transverse re-
laxation is slower, the steady-state profiles of ��x ,y , t� are no
more constant and the surfaces normal to the flux density
become curved, especially near the curved boundaries.

Notice that the parameter � is a scaling parameter of the
transverse space; it disappears from �2.2� under rescaling y
→y /�� and the diffusion becomes isotropic. To be consis-
tent with this scaling, we must expand z�x ,y� in �y2 instead
of only �. The odd powers of y in �2.13� are not present
because of BC at y=0. Finally, putting the ansatz �2.13� into
the boundary condition �2.12� results indeed in a consistent
recurrence relation for the coefficients zj�x�

zj�x� =
1

2j

A��x�
A�x�

zj−1� �x� . �2.14�

The zeroth coefficient z0�x� is not fixed; we can choose it to
find the transformation relation in the most convenient way.
The “natural” choice is z0�x�=x, when the points on the x
axis �y=0� have the same x and z coordinate, but the sum-
mation of the corresponding expansion

z = x +
1

2

A��x�
A�x�

�y2 +
1

8

A��x�
A�x�

�A��x�
A�x�

��
�2y4 + ¯

�2.15�

may be too complicated. Instead, one can choose z0�x� such
that the next coefficient z1�x�=const and the following terms
according to the recurrence scheme �2.14� are zero.

Finally notice, if one takes the simplest transformation
relation, z=x, which is proper in the limit �→0, our varia-
tional procedure recovers the standard Fick-Jacobs equation;
��x�=��x�=A�x� according to �2.8� and �2.9�. In this case,
our calculation reproduces the variational derivation of the
Fick-Jacobs equation in �8�.

In the case of �=0, the scaling of the transverse space y
→y /��, removing the anisotropy of the diffusion, shrinks
the channel into the line, so the Fick-Jacobs equation, com-
ing from the most calculations as an essential approximation,
represents then the exact mapping. Considering a finite rate
of transverse diffusion ��	0� requires to look for the cor-
rections. We suppose that our �-expansion is valid up to �

=1 �isotropic diffusion�, which we are obviously interested
in. The error is hard to estimate even having taken the full
expansion of z=z�x , t� in �; it strongly depends on the shape
of channel, e.g., the function A�x�. We will be content to
compare this result with other methods applied to two solv-
able geometries in Sec. IV.

A. Variational mapping for 3D channel of cylindrical
symmetry

The above variational method can be easily extended to
the mapping of diffusion in a 3D channel with cylindrical
symmetry. We suppose that the 3D density ��x ,y1 ,y2 , t�
=��x ,r , t� depends only on the radius r=�y1

2+y2
2 in the trans-

verse directions and not on the angle 
=arctan�y2 /y1�. Like-
wise, the channel is defined by a function R�x�, not depend-
ing on 
: 0�r�R�x�. The corresponding diffusion
functional is then

F = 2��
t0

t1

dt�
xL

xR

dx�
0

R�x�

rdr�1

2
��̇�̄ − �̇̄�� + �x�̄�x�

+
1

�
�r�̄�r�� �2.16�

and �, �̄ must obey the boundary conditions

1

�
�r� = R�
�x��x�
r=R�x�,

1

�
�r�̄ = R�
�x��x�̄
y=R�x�,

�2.17�

�x�=�x�̄= 
0
x=xL,xR
. We also require the functions � and �̄ to

be smooth at the rotational axis in Cartesian �x ,y1 ,y2� space,
which requires that they depend only on even powers of r;
�=��x ,r2 , t�, �̄= �̄�x ,r2 , t�. This condition is equivalent to
�2.3� if y is replaced by r.

Formally, we have the same picture as in the 2D case, so
having applied the same steps, we can immediately write the
resultant 1D equation. Supposing that � and �̄ are again func-
tions of only the curvilinear variable z=z�x ,r�, doing the
transformation of coordinates from �x ,r� to �z ,r�, and inte-
grating the transformed functional F �2.16� over r, we get a
functional F1D of the same form as �2.7�, with slightly dif-
ferent definitions of � and �:

��z� = 2��
0

R�xz�

rdr
�x

�z
, �2.18�

��z� = 2��
0

R�xz�

rdr� �x

�z
�−1�1 +

1

�
� �x

�r
�2	 , �2.19�

where x=x�z ,r� is the relation inverse to z=z�x ,r� and �x /�z
is the Jacobian of the transformation. The integration over r
is carried out at a constant z, so the new upper limit R�xz� is
defined exactly as in 2D: xz=x(z ,R�xz�).

The stationary condition �F1D=0 leads to the 1D diffu-
sion equation of the same form as �2.11�:
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���z,t�
�t

=
1

��z�
�

�z
��z�

�

�z
��z,t� . �2.20�

The transformation relation is again fixed to satisfy the
boundary conditions �2.17�; if the function z�x ,r� is ex-
pressed in the form of a �-expansion

z = �
j=0

�

� jr2jzj�x� , �2.21�

the boundary condition �2.17� results in the same recurrence
scheme for the coefficients zj�x� as in the 2D case:

zj�x� =
1

2j

R��x�
R�x�

zj−1� �x� . �2.22�

B. Variational mapping in “natural” coordinates

A special class is formed by channels which can be trans-
formed to rectangles in some orthogonal curvilinear coordi-
nate system; then the points inside the channel described by
coordinates �=��x ,y� and 
=
�x ,y� are bounded by simple
rectangular relations �L����R and 
0�
�
1. Many such
systems are exactly solvable in certain circumstances, in par-
ticular when their properties under stationary conditions are
calculated. So it will be useful to obtain the extended Fick-
Jacobs equation for such cases.

First, the functional F �2.1� is rewritten in curvilinear co-
ordinates �� ,
�:

F = �
t0

t1

dt�
�L

�R

d��

0


1

d

��x,y�
���,
��1

2
��̇�̄ − �̇̄�� + �� ��

�x
�2

+ � ��

�y
�2����̄��� + �� �


�x
�2

+ � �


�y
�2��
�̄�
�	 .

�2.23�

��x ,y� /��� ,
� stands for Jacobian of the transformation.
Let us imagine now that � describes position in the lon-

gitudinal direction, while 
 represents the transverse coordi-
nate. As we suppose the transients in the transverse direction
to be quickly quenched, the 2D densities � and �̄, if ex-
pressed as functions of only one spatial variable, have to be
functions of �. If applied to �2.23� and the integration over 

carried out, we get again the functional F1D �2.7� in the vari-
able � with

���� = �

0


1

d

��x,y�
���,
�

, �2.24�

���� = �

0


1

d
� ��x,y�
���,
��

−1�� �x

�

�2

+ � �y

�

�2� . �2.25�

x=x�� ,
� and y=y�� ,
� are the relations inverse to �
=��x ,y�, 
=
�x ,y�. The condition of stationarity �F1D=0
then gives the mapped 1D diffusion equation

����,t�
�t

=
1

����
�

��
����

�

��
���,t� . �2.26�

The same procedure can be done for a 3D channel with
rotational symmetry, transformable to a simple cylinder in
some curvilinear coordinates �=��x ,r�, 
=
�x ,r�; the trans-
verse radius r=�y1

2+y2
2. The stationary condition of the cor-

responding functional F1D leads to the same mapped 1D
equation �2.26� with redefined � and �:

���� = �

0


1

d
r��,
�
��x,r�
���,
�

, �2.27�

���� = �

0


1

d
r��,
�� ��x,r�
���,
��

−1�� �x

�

�2

+ � �r

�

�2� .

�2.28�

It is easy to verify that if the coordinates � and 
 form an
orthogonal system, the boundary conditions �2.3� and �2.4� in
2D and �2.17� in 3D are automatically satisfied.

III. COMPARISON WITH THE STEADY-STATE
APPROXIMATION

The variational method allows us to find the 1D mapped
diffusion equation in concise form, and with the spatial op-
erator of only second order, but it is hard to guess how ac-
curate the results are. Therefore in this section, we compare
the variational mapping with the steady-state approximation
�6�, which is the exact mapping of the 2D �3D� diffusion
equation onto the longitudinal dimension on a restricted
space of eigenfunctions of the 2D �3D� diffusion operator
�7�.

While the variational method finds the extended Fick-
Jacobs equation �2.20� governing 2D �3D� density ��z , t� as a
function of only the spatial curvilinear variable z, the steady-
state approximation constructs the 1D diffusion equation di-
rectly for the projected 1D density ��x , t� �or P�x , t� as used
in �6��:

��x,t� =
P�x,t�
A�x�

=
1

A�x��0

A�x�

dy��x,y,t� �2D� . �3.1�

First we have to find conversion relations between these
two formulations. In the defining formula for � �3.1�, we
replace ��x ,y , t� by ��z�x ,y� , t�, expand it in � and carry out
the integration over y:

��x,t� =
1

A�x��0

A�x�

dy��x + �y2z1�x� + �2y4z2�x� + ¯ ,t�

= �1 +
�

3
A2�x�z1�x�

�

�x
+

�2

5
A4�x��z2�x�

�

�x

+
1

2
z1

2�x�
�2

�x2� + ¯ 	��x,0,t� �3.2�

which can be easily inverted, looking for an operator �̂0 in
form of an expansion in �, to obey the inverse relation
��x ,0 , t�= �̂0��x , t�:
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�̂0 = 1 −
�

3
A2�x�z1�x�

�

�x
+

�2

90
A4�x�z1

2�x�
�2

�x2 −
�2

45
A3�x�

�„9A�x�z2�x� − 10A��x�z1
2�x� − 5A�x�z1�x�z1��x�…

�

�x

+ ¯ . �3.3�

Hence, after substituting for z1, z2 , . . . according to �2.15� in
the Taylor series of �(z�x ,y� , t) in �, we get the inverse re-
lation producing 2D density ��z , t� from ��x , t�:

�„z�x,y�,t… = �1 + �� y2

2A
−

A

6
�A�

�

�x
+ �2A�2� y4

8A2 −
y2

12

+
A2

360
� �2

�x2 + �2� y4

8A3 �AA�A� − A�3� −
y2

12A

��AA�A� + A�3� +
AA�

360
�AA� + 19A�2�� �

�x

+ ¯ 	��x,t� . �3.4�

This relation can be compared with the analogous formula
in the steady-state approximation, transforming ��x , t� to the
2D density �:

��x,y,t� = �1 + �� y2

2A
−

A

6
�A�

�

�x
+ �2� y4

24A2 �3A�2 − 2AA��

+
y2

12
�2AA� − A�2� −

A2

360
�14AA� − A�2�� �2

�x2

+ �2� y4

24A2�− AA�3� + 4A�A� − 3
A�3

A
�

+
y2

12
�AA�3� − 2A�A� −

A�3

A
� −

A2

360

��7AA�3� − 8A�A� − 19
A�3

A
�� �

�x
+ ¯ 	��x,t� .

�3.5�

The transformation formulas coincide up to the first order in
�. Both satisfy the boundary conditions �2.3� and �2.4� and
do not violate the defining relation �3.1�. But only the steady-
state density � �3.5� satisfies the exact 2D diffusion equation
�2.2� at any point �x ,y�; the variational � exhibits an error in
second order.

Next, we compare the projected 1D diffusion equations.
We must transform the extended Fick-Jacobs equation �2.11�
from the coordinates �z ,y� back to �x ,y� and integrate both
sides over y

���x,t�
�t

=
1

A�x��0

A�x�

dy
1

�„z�x,y�…
�x

�z

�

�x

��„z�x,y�…
�x

�z

�

�x
�„z�x,y�,t… . �3.6�

If we substitute for �(z�x ,y� , t) according to the transforma-
tion relation �3.4�, expand the terms to the desired order in �

and integrate the right-hand side �RHS� over y, we get the
mapped equation for 1D density ��x , t� coming from the
variational method:

���x,t�
�t

=
1

A�x�
�

�x
�A −

�

3
AA�2 −

�2

45
AA��2A�AA� + A�2�

�

�x

+ AA�A� + A2A�3� − 7A�3� + ¯ 	 �

�x
��x,t� . �3.7�

This equation coincides with the 1D steady-state equation
�1.5� up to second order. In higher orders �we tested up to
fourth order�, the structure of both equations remains the
same, the nth order in � contains the derivatives of � up to
�x

n+1�, but the corresponding coefficients differ except for the
terms containing only products of A�x� and A��x�. On the
other hand, the terms with higher derivatives of A�x� are
missing in the equation coming from the variational method.

The same comparison can be done for diffusion in a 3D
channel with cylindrical symmetry. The 1D density ��x , t� is
now defined as

��x,t� =
2�

A�x��0

R�x�

rdr��x,r,t� , �3.8�

where r=�y1
2+y2

2 is the transverse radius and A�x� denotes
the area of the cross section at the point x: A�x�=�R2�x�. The
relation transforming ��x , t� to ��z , t�

��z�x,r�,t� = �1 + ��r2 −
A

2�
� A�

4A

�

�x
+

�2A�2

192�2A2 �6�2r4

− 6�r2A + A2�
�2

�x2 + �2� r4

32A3 �AA�A� − A�3�

−
r2

32�A
A�A� +

1

192�2A
�AA�A� + 2A�3�� �

�x

+ ¯ 	��x,t� �3.9�

differs from the transformation formula of the steady-state
approximation in second order and the 1D diffusion equa-
tions coincide up to second order in �

���x,t�
�t

=
1

A�x�
�

�x
�A −

�

8�
A�2 −

�2

192�2

A�

A
�2A2A�

�

�x

+ A2A�3� − AA�A� − 3A�3� + ¯ 	 ���x,t�
�x

.

�3.10�

IV. EXACTLY SOLVABLE EXAMPLES

In this section, we test the extended Fick-Jacobs equation
on two examples: a 2D channel with A�x�=x, which is ex-
actly solvable �the exact Green’s function of the 2D diffusion
equation is known �6�� and the 3D tube shaped as a rotational
hyperboloid, for which the stationary flux has been calcu-
lated exactly �2�.
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A. 2D channel with A„x…=x

The calculation of the extended Fick-Jacobs equation for
this geometry is very simple, so we can easily demonstrate
the variational mapping, and the result is comparable with
the known solution.

Following the recurrence scheme �2.14�, we find the rela-
tion for the curvilinear coordinate z:

z�x,y� = x +
�y2

2x
−

�2y4

8x3 + ¯ = �x2 + �y2. �4.1�

The sum of the series is correct; if it is substituted into the
boundary condition �2.12�, we get the identity

1

�
�y
�x2 + �y2
y=x = �x
�x2 + �y2
y=x =

1
�1 + �

. �4.2�

Then the inverse relation is x�z ,y�=�z2−�y2 and the Jaco-
bian �x /�z=z /�z2−�y2. The upper limit in the integrations,
defining � and � is A�xz�=xz, which is given by the implicit
equation

xz = x„z,A�xz�… = �z2 − �xz
2, hence xz =

z
�1 + �

. �4.3�

Finally we can calculate the coefficients � �2.8� and � �2.9�

��z� = �
0

A�xz� �x

�z
dy = �

0

z/�1+� zdy
�z2 − �y2

=
z

��
arctan �� ,

�4.4�

��z� = �
0

z/�1+�

dy
�z2 − �y2

z �1 +
1

�
� �y

�z2 − �y2�2	
=

z
��

arctan �� �4.5�

so the extended Fick-Jacobs equation is very simple:

���z,t�
�t

=
1

z

�

�z
z

�

�z
��z,t� �4.6�

and its solution, starting from the initial condition ��z ,0�
=��z−z0� is given by

��z,t� =
��

arctan ��

1

2t
I0� zz0

2t
�e−�z2+z0

2�/4t, �4.7�

where I0 denotes the Bessel function of the first kind with
imaginary argument. This result is known, it is the solution
of the 1D diffusion equation in the steady-state approxima-
tion �formula �3.4� in �6��.

Equivalence of the results obtained from the steady-state
approximation and by the variational method for the geom-
etry A�x�=x can also be understood as proof that the current
extended Fick-Jacobs equation includes correctly all terms in
any order of �, which do not depend on higher derivatives of
A�x� than the first, A��x�. In other words, in comparison with
the steady-state approximation, the extended Fick-Jacobs
equation sums up a certain class of contributions to the ex-
actly mapped 1D equation. These contributions are related to

the first derivative of A�x�; if the higher derivatives of A�x�
are zero, the sum produces correctly all nonzero terms.

B. Hyperboloidal tube in natural coordinates

The hyperboloidal tube �Fig. 2� is an object defined by
simple rectangular relations in oblate spheroidal coordinates
�� ,
 ,
�

x = a�
, r2 = y1
2 + y2

2 = a2�1 + �2��1 − 
2� . �4.8�

�L����R and 
0�
�
1 with �L, �R, 
0, 
1 and a con-
stant. As we suppose also the cylindrical symmetry of �,
there is no dependence on the angle 
=arctan�y2 /y1� any-
where in the next calculation.

The coordinate 
 represents now the transverse coordi-
nate; the points with 
=
1=1 lie on the x axis. The lower
bound 
0 �0�
0�1� determines how much the tube is
opened. While 
0→1 makes the tube flat, the limit case 
0
→0 changes the hyperboloid to two half-spaces separated by
the plane x=0, communicating only through the circular hole
of radius a.

For this geometry, Zwanzig �2� derived the exact flux
through the bottleneck ��=x=0� under stationary conditions,
when the density at infinity ���→�� is kept constant. The
diffusing particles can pass through the bottleneck only once,
there is an absorbing BC at �L=0: ���=0�=0, while on the
walls of the hyperboloidal tube, the reflecting �Neumann� BC
holds.

Our goal in this section is to test our variational mapping
on this exactly solvable example. First we derive the ex-
tended Fick-Jacobs equation in the “natural” coordinates � ,

�4.8�. We make the supposition that � is the longitudinal
coordinate and so our ansatz density � in the functional F
�2.16� depends only on it: ��x ,y1 ,y2 , t�=��� , t�. Having ex-
pressed the Jacobian of the transformation

FIG. 2. Hyperboloidal cone with cylindrical symmetry.
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��x,r�
���,
�

= −
a3

r��,
�
��2 + 
2� , �4.9�

we can calculate � and � according to �2.27� and �2.28�:

���� = �

0

1

a3��2 + 
2�d
 = a3��2�1 − 
0� +
1

3
�1 − 
0

3�	 ,

�4.10�

���� = �

0

1 r2��,
�d


a3��2 + 
2���a��2 + � 
a2

r��,
�
��2 + 1��2	

= a�1 − 
0��1 + �2� , �4.11�

that gives finally the extended Fick-Jacobs equation in the
form

����,t�
�t

=
1

a2
„�2 + �1 + 
0 + 
0

2�/3…
�

��
�1 + �2�

�

��
���,t� .

�4.12�

In the stationary case �t��� , t�=0, so the prefactor 1 /����
in �4.12� becomes irrelevant and we have to solve the sta-
tionary equation

0 =
�

��
�1 + �2�

�

��
���� , �4.13�

which is identical with the equation solved by Zwanzig, giv-
ing the same result

���� = �0�1 −
2

�
arctan

1

�
� �4.14�

if the same Dirichlet BC ��0�=0 and ����=�0 are required.
Following his calculation, we get the same formula for the
total steady-state flux

J0 = 4Da�1 − 
0��0 �4.15�

�we have the time rescaled by the diffusion constant D�.
This calculation demonstrates that the extended Fick-

Jacobs equation derived in natural coordinates gives an exact
result under stationary conditions. It is not a surprise; the
stationary condition leaves only one “natural” longitudinal
coordinate in which the density varies. So the transients in 

are quenched from the beginning.

C. Hyperboloidal tube; the � expansion

Nevertheless, in the general case we do not know the
“natural” longitudinal variable and we have to use a method
which is able to find the mapped equation for arbitrary cross-
section of the channel A�x�. One possibility is the expansion
of z�x ,r� in �, as we proposed in the previous section. Now
we shall test it on the example of the hyperboloidal tube.

Starting from the definition of the hyperboloidal surface
in oblate spheroidal coordinates �4.8� 
=
0, the function
R�x�, bounding the radius of the channel in the cylindrical
coordinates, reads

R2�x� = � 1


0
2 − 1��x2 + 
0

2a2� . �4.16�

The first step is that of finding the transformation relation
from �x ,r� to the curvilinear coordinate z. We use the possi-
bility of choosing z0�x� to cut off the series �2.21�; if

z�0�x� =
2R�x�
R��x�

=
2

x
�x2 + 
0

2a2�, hence

z0�x� = x2 + 2
0
2a2 log x + const, �4.17�

then z1�x�=1 and any next coefficient zj�x� is zero, so the
relation z=z�x ,r� can be expressed in the closed form

z = z�x,r� = x2 + 
0
2a2 log

x2


0
2a2 + �r2. �4.18�

The inverse relation x=x�z ,r� can be written as

x2 = 
0
2a2PLog�e�z−�r2�/
0

2a2
� , �4.19�

where we used the function Product Logarithm: u
=PLog�v�, which is inverse to v=ueu.

From now on, we do not need � as an expansion param-
eter and we set it to 1, having restored isotropy of the diffu-
sion in the channel. The upper limit of integration R�xz� in �
and � can then be obtained from the equation

z = z„xz,R�xz�… =
xz

2


0
2 + 
0

2a2 log
xz

2


0
2a2 + a2�1 − 
0

2�

�4.20�

in a simpler form

R2�xz� = a2�1 − 
0
2��1 + 
0

2PLog� 1


0
2e�z/a2−1�/
0

2+1�	 .

�4.21�

The integration over y can be carried out analytically, but the
formulas for the functions ��z� and ��z� are rather compli-
cated

��z� = 
0a�
0

R�xz�

rdr
�

�z
�PLoge�z−r2�/
0

2a2

= −

0a

2
��PLog�eu��u0

uR, �4.22�

��z� = − 2�
0a�3��PLog�eu��3/2 −
1

�PLog�eu�

+ �4 +
z


0
2a2 − u��PLog�eu�	

u0

uR

, �4.23�

where we have introduced an auxiliary variable u= �z
−r2� /
0

2a2, so the boundaries u0 and uR are

uR =
z − R2�xz�


0
2a2 and u0 =

z


0
2a2 . �4.24�
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Also the corresponding extended Fick-Jacobs equation
based on the variable z �2.20� is much more complicated than
that derived in the natural coordinate � �4.12�. These ap-
proximations are not equivalent: the curvilinear variable z
cannot be transformed to � by some function ��z�. Notice
that the variable � �4.8� reduces to x /a at the x axis, when

=1. However, we can transform z to a variable �, having
the same property:

a2��2 + 
0
2 log

�2


0
2� = z�=x2 + 
0

2a2 log
x2


0
2a2 + r2� ,

�4.25�

but keeping �=�=const, the curves �=��x ,r� and �=��x ,r�
are not the same, they meet each other only at the x axis; see
Fig. 3. While �=��x ,r� �dashed lines� are ellipses focused in
�0,a�, �0,−a� and perpendicular to the hyperbolic boundaries
�bold curves� for any 
0, the curves �=��x ,r� are perpen-
dicular only to the boundary of specific 
0, as required by the
boundary condition �2.17� with �=1.

Finally, we calculate the total flux through the bottleneck
of the hyperboloidal tube. In this stationary case, the prefac-
tor 1 /��z� is again irrelevant, so we solve a simpler equation
for ��z�:

0 =
�

�z
��z�

�

�z
��z�, hence ��z� = C0�

−�

z dz�

��z��

�4.26�

for the BC defined in the previous paragraph. C0 is an inte-
gration constant fixed to set the desired value of �=�0 in z
→�

C0 = �0�
−�

� dz

��z�
. �4.27�

The longitudinal component of the local flux density
jx�x ,r�, from its defining relation

jx�x,r� = − D
���x,r�

�x
= − D

�z

�x

���z�
�z

= − D
�z

�x

C0

��z�
�4.28�

gives

jx�x → 0,r� = − DC0
1

�a
0�2 �e�1/
0
2−1�/2 − 1�−1er2/2a2
0

2

�4.29�

at the bottleneck, after having calculated the limit of
��z /�x��−1�z� for z→−�. The total flux J0 is then given by
simple integration over the cross section of the tube

J0 = �
0

R�0�

2�jx�x → 0,r�rdr = − 2�D�0��
−�

� dz

��z��−1

.

�4.30�

Having transformed from z to the dimensionless variable �
�4.25�, we find that the integral in this simple looking result
is proportional to 1/a, but still too complicated to be calcu-
lated analytically. For comparison with other approxima-

FIG. 4. Total stationary flux through the bottleneck of the hy-
perboloidal cone J0 �normalized by 4aD�0� versus the parameter

0. The variational method using the natural coordinates �4.8� gives
the exact result �4.15�. Extended Fick-Jacobs equation based on the
�-expansion of the transformation relation z=z�x ,r� leads to values
that are close to the exact ones for 
0	0.5 �Ext FJ�. For compari-
son, there are also plots of J0 coming from the Fick-Jacobs equation
�FJ�, the Fick-Jacobs equation with the first order correction
�Mod1�, steady-state approximation up to the second order �2nd�
and Zwanzig’s intuitive modification of the corrected Fick-Jacobs
equation �Mod2� �2� in the graph.

FIG. 3. The curves with constant z=z�x ,r� �thin full lines� in the
hyperboloid. The functions z�x ,r� have the form �2.21� and obey
the boundary condition �2.17� at �=1. The thick lines depict the
walls of the hyperboloid for 
0=0.4 and 0.7. The dashed curves are
ellipses, defined as �=const according to the defining relation �4.8�.
While the ellipses are orthogonal to the hyperboloidal boundaries of
any 
0, the curves z=z�x ,r� are orthogonal only to the boundary of
specific 
0, for which they have been calculated.
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tions, we have calculated it numerically and the final values
of J0 /4Da�0, depending on the parameter 
0, are plotted in
Fig. 4 together with the exact solution �4.15�, the Fick-
Jacobs result, the first order �Zwanzig� correction “Mod1,”
the second order steady-state approximation calculated from
Eq. �3.10� and Zwanzig’s intuitive formula “Mod2.” Both
curves, “Mod1” and “second” bear signs of a truncated ex-
pansion: they improve the results in the region of good con-
vergence �
0 close to 1, corresponding to very smooth chan-
nels�, but for smaller 
0, the corrections make the results
even worse than those from the Fick-Jacobs equation.

Our extended Fick-Jacobs equation, on the other hand,
gives values very close to the exact ones for 
0	0.5, and
even in the limit 
0→0 goes to a finite nonzero value �1.57.

V. CONCLUSION

In this paper, we have presented a mapping of the diffu-
sion equation in a 2D or 3D channel of varying cross-section
A�x� onto a 1D differential equation using a variational
method. As a variational ansatz, we have considered that the
2D �3D� density �(x ,y1 , �y2� , t) is a function of only one
spatial �longitudinal� curvilinear variable z. The mapped 1D
equation then always has the concise form

���z,t�
�t

=
1

��z�
�

�z
��z�

�

�z
��z,t� , �5.1�

reminding one of the Fick-Jacobs equation, so we called it an
extended Fick-Jacobs equation. The coefficients � and �,
depend on the geometry of the channel and also on the trans-
formation between the coordinates �x ,y1 , . . .� and �z ,y1 , . . .�.

The choice of the transformation relation z=z�x ,y1 , . . . �
appears to be crucial for the quality of the approximation. We
proposed two possibilities. The first one is the transformation
to the “natural” orthogonal coordinates, in which the channel
turns into a simple rectangle �or a cylinder in 3D rotational
symmetric case�. One of them is declared as a longitudinal
one, considered as z, on which the density � depends; the
others are integrated out. This choice of z gave the exact
result in the task we have solved: calculation of the total
stationary flux through a hyperboloidal tube.

In the general case of an arbitrary cross section A�x�, we
proposed z=z�x ,y� in the form of expansion

z�x,y� = x + �y2z1�x� + �2y4z2�x� + ¯ �5.2�

in the parameter �=D /Dy, expressing anisotropy of the dif-
fusion constant in the longitudinal �D� and transverse �Dy�
directions. Its coefficients zj are fixed to obey the Neumann
boundary conditions, requiring that the local flux density is
parallel to the walls of the channel. This choice of z leads to
the extended Fick-Jacobs equation �5.1�, which is equivalent
to the steady-state approximation �6� up to second order in �
and it sums properly all the terms depending only on A�x�
and A��x� in the higher orders of �. Also, it gave a very good
result in the test of calculating the stationary flux through the
hyperboloidal tube �Fig. 4�.

Nevertheless the density �(z�x ,y� , t) does not satisfy the
exact 2D �3D� diffusion equation �2.2� since the second order
in �—in contrast to the density ��x ,y� , t� in the steady-state
approximation �6�. Although taking the full expansion in our
test example, we have not reconstructed the extended Fick-
Jacobs equation as it comes out using natural coordinates.
This raises the question of whether and how our variational
mapping can be improved. Currently we see the fixing the
transformation relation using ansatz �5.2� as the weakest
point of our calculation. Finding the curvilinear coordinate
z=z�x ,y�� directly from within the variational method would
make the result more consistent. Also, the question of how
exact results can be achieved supposing 2D �3D� density � to
be a function of only one spatial variable remains open.

As we have emphasized, the models studied here are very
simple “toy models,” chosen to evaluate strategies for ana-
lyzing diffusion in confined, i.e., quasi-one-dimensional
spaces. These strategies extend without difficulty to many-
body diffusion, and so the information obtained in the above
fashion will be invaluable in the understanding at a quanti-
tative level of the phenomenology of the more complex sys-
tems. Work along these lines is now under way.
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